
The Inside Story on the
Java Debugger

Douglas Pearson

douglas.pearson@threepenny.net

2

Reminder

3

Design Principles

• XML based
– Interface into Soar via XML (SML: Soar Markup Language)
– But maintain high performance

• Plug-in Architecture
– Debugger made up of a series of modules
– Future extensions and user additions

• User configurable
– Select elements you find useful
– Combine as you like
– Easier decision making on whether to include features

4

Plug-in Architecture

• Simple plug-in approach
– Each window is instance of a separate class
– All derive from abstract base class
– Rest of code deals only with the base class

• SWT based
– May help with Eclipse integration
– Eclipse defines a full OGSI plug-in model etc.

• Building a plug-in module is pretty simple
– Hope user community will build/modify them

5

Existing modules

• AbstractView (base)
– AbstractComboView (combo box for commands)

• FoldingTextView (tree trace)
• TextTraceView (text trace)
• UpdateCommandView (updating window)

– ButtonView (button panel)
– EditorView (edit production)

• Extend from AbstractView or an existing class
– No need to be text based

6

Each View’s Responsibilities
• Register for events it is interested in

– E.g. Listen for trace output events
– Multiple windows listening for same event is efficient

• Store and retrieve its internal settings (as XML)
– E.g. command history; button names; specific properties
– Stored as part of a layout file (.dlf)

• Implement its windows within an SWT Composite parent window
– Can do anything you like inside that

• Optional:
– Support execution and display of commands (e.g. from menus/buttons)
– Support entry of commands or other parameters from user (e.g. combo box)
– Support find
– Support user configurable properties

7

AbstractView structure
• Event handling

– void registerForAgentEvents(Agent agent) ;
– void unregisterForAgentEvents(Agent agent) ;

• Command execution
– String executeAgentCommand(String command, boolean echoCommand) ;
– void displayText(String text) ;

• Initialization and storage
– void init(MainFrame frame, Document doc, Pane parentPane) ;
– ElementXML convertToXML(String tagName, boolean storeContent) ;
– void loadFromXML(MainFrame frame, Document doc, Pane parent, ElementXML element)

• Actions
– void showProperties() ;
– boolean find(String text, boolean searchDown, boolean matchCase, boolean wrap, boolean

searchHiddenText) ;
– void fillInContextMenu(Menu contextMenu, Control control, int mouseX, int mouseY) ;

8

User configurable

• Changing the display w/o recompiling
– Add/remove windows (plug-in modules)
– Adjust properties to change behavior

• E.g. update window every n-th decision

• Can save multiple window layouts
– Please send us layouts you like, we’ll share them

9

Configuring Window Properties

10

Adding/Removing Windows

11

Adding/Removing Buttons

12

Nuggets and Coal
• Nuggets

– Java
– Plug-in approach works
– Customization works

• Coal
– SWT can be tricky but the results look good
– Plug-in framework needs to mature
– Interaction between plug-ins will need extension
– Not integrated with Eclipse yet

• Want to try a plug-in? Please let us know:
soar-sml-list@umich.edu

mailto:soar-sml-list@umich.edu

	The Inside Story on the Java Debugger
	Reminder
	Design Principles
	Plug-in Architecture
	Existing modules
	Each View’s Responsibilities
	AbstractView structure
	User configurable
	Configuring Window Properties
	Adding/Removing Windows
	Adding/Removing Buttons
	Nuggets and Coal

